The Shanin number and the predshanin number of N^{φ}_{τ} -kernel of a topological spaces

F.G. Mukhamadiev

(National University of Uzbekistan, Uzbekistan) *E-mail:* farhod8717@mail.ru

A cardinal $\tau \geq \aleph_0$ is said to be a caliber of the space X if for any family $\mu = \{U_\alpha : \alpha \in A\}$ of nonempty open in X sets such that $|A| = \tau$, there exists $B \subset A$, for which $|B| = \tau$, and $\bigcap \{U_\alpha : \alpha \in B\} \neq \emptyset$. Set $k(X) = \{\tau : \tau \text{ is a caliber of the space } X\}$.

The cardinal number $min\{\tau : \tau^+ \text{ is caliber of } X\}$ is called the Shanin number of X and denoted by sh(X), where τ^+ is the least cardinal number from all cardinals strictly greater that τ .

A cardinal $\tau \geq \aleph_0$ is said to be a precaliber of the space X if for any family $\mu = \{U_\alpha : \alpha \in A\}$ of nonempty open in X sets such that $|A| = \tau$, there exists $B \subset A$, for which $|B| = \tau$, and $\{U_\alpha : \alpha \in B\}$ is centered. Set $pk(X) = \{\tau : \tau \text{ is a precaliber of the space } X\}$.

The cardinal number $min\{\tau : \tau^+ \text{ is precaliber of } X\}$ is called the predshanin number of X and denoted by psh(X), where τ^+ is the least cardinal number from all cardinals strictly greater that τ . A system $\xi = \{F_\alpha : \alpha \in A\}$ of closed subsets of a space X is called *linked* if any two elements from

 ξ intersect [1].

A.V. Ivanov defined the space NX of complete linked systems (CLS) of a space X in a following way:

Definition 1. A linked system M of closed subsets of a compact X is called *a complete linked system* (a CLS) if for any closed set of X, the condition

"Any neighborhood OF of the set F consists of a set $\Phi \in M$ " implies $F \in M[2]$.

A set NX of all complete linked systems of a compact X is called the space NX of CLS of X. This space is equipped with the topology, the open basis of which is formed by sets in the form of

 $E = O(U_1, U_2, \ldots, U_n) \langle V_1, V_2, \ldots, V_s \rangle = \{M \in NX : \text{for any } i = 1, 2, \ldots, n \text{ there exists } F_i \in M$ such that $F_i \subset U_i$, and for any $j = 1, 2, \ldots, s, F \cap V_j \neq \emptyset$ for any $F \in M\}$, where U_1, U_2, \ldots, U_n , V_1, V_2, \ldots, V_s are nonempty open in X sets [2].

Definition 2. Let X be a compact space, φ be a cardinal function and τ be an arbitrary cardinal number. We call an N_{τ}^{φ} - kernel of a topological space X the space

$$N^{\varphi}_{\tau}X = \{ M \in NX : \exists F \in M : \varphi(F) \le \tau \}.$$

Theorem 3. Let X be an infinity compact space and $\varphi = d, \tau = \aleph_0$. Then: 1) $sh(N^{\varphi}_{\tau}X) \leq sh(X)$; 2) $psh(N^{\varphi}_{\tau}X) \leq psh(X)$.

References

^[1] Fedorchuk V. V., Filippov V. V. General Topology. Basic Constructions. Fizmatlit, Moscow. 2006.

^[2] Ivanov A. V. Cardinal-valued invariants and functors in the category of bicompacts. Doctoral thesis in physics and mathematics, Petrozavodsk, 1985.